PRE-OPERATIVE ORIENTATION PROGRAMME ON PRE AND POST-OPERATIVE ANXIETY.

SUCHANA ROY BHOWMIK,
M.Sc. Nursing, Medical Surgical Nursing (CVTN)

INTRODUCTION:
Coronary heart disease is a major cause of death and disability. Coronary heart disease may be treated by coronary artery bypass graft (CABG) surgery. Following surgery, patients routinely spend the immediate post-operative period in the intensive care unit (ICU) to allow intensive medical and nursing monitoring and management. Given that it has been suggested that many patients have found the ICU to be an especially ‘alien’ environment, it is not surprising to find that links have been made between admission to such an environment and exacerbations of existing anxieties that some patients suffer. For many such patients, the ICU environment can be a ‘wildly unfamiliar’ one, depriving them of normal interactions and sensations while constantly bombarding them with strange sensory stimuli. This situation can exacerbate the feelings of anxiety that the patient may already be experiencing from the surgery and consequently, trigger psychological abnormalities collectively referred to as ‘Intensive care syndrome’. ‘Intensive care syndrome’ is a phenomenon of altered mental function (e.g. confusion, disorientation and hallucinations) that occurs in some patients while in intensive care and resolves after transfer.

ABSTRACT:
Surgery, whether elective or emergent, is a stressful and complex event. In cardiac surgery, the patient is transferred to an intensive care unit. These intensive care units are triumphs of technological medicine and surgery. So, the atmosphere leads to development of anxiety which results in psychological disturbances. Studies have reported increasing knowledge and advanced interventions relieve pre-operative anxiety. The nurse plays an integral member of the multidisciplinary team to provide patient education and orientation to patients regarding intensive therapy unit which relieves anxiety. The study finding suggested that providing Pre-operative orientation programme in pre-operative period assists in the reduction in physiological parameters (blood pressure, pulse and respiration) in pre-operative period and reduction in subjective feeling of anxiety of the participants in pre and post-operative period.

Problem statement: -
Effect of Pre-operative orientation programme on pre and post-operative anxiety of CABG patients in selected hospitals of Pune.

OBJECTIVES OF THE STUDY:
1. To assess the baseline data of anxiety level in pre-operative period for both the control and experimental groups.
2. To determine the anxiety level in pre-operative period after the intervention.
3. To determine the anxiety level in post-operative period after the intervention.
4. To compare the anxiety level between both the groups in pre-operative and post-operative period.

RESEARCH METHODOLOGY:
Research design and sample:
In this study the quasi-experimental - non-equivalent control group before-after design was selected. The sample consisted of forty (twenty in the control group and twenty in the experimental group) who were undergoing coronary artery bypass grafting for the first time and non-probability purposive sampling was adopted.

Tools and technique:
The tools used in this study for data collection are:

Section I: Demographic profile.

Section II: Physiological Parameter Measurement Scale (PPMS).

Section III: Modified Self-Evaluation Questionnaire Based on Spielberger’s State anxiety Inventory (SSAI).

Data collection process:
• The written permission was obtained from selected multispeciality hospitals of Pune prior to the data collection. The data collection was done in the period of
one month in April 2010.
• A written consent was obtained from them.
• As baseline data i.e. 24 hours before scheduled surgery the data were collected from both the groups by the demographic profile, Physiological Parameter Measurement Scale (PPMS) and Modified Self-Evaluation Questionnaire based on Spielberger’s State Anxiety Inventory (SSAI).
• After that in the experimental group the Pre-operative orientation programme was introduced which included giving information to participants related to cardiac recovery unit, post-operative activities and a visit was arranged to cardiac recovery unit for the participants which included showing the unit, talking to recovery unit staff, talking to patients who had undergone CABG operation. At the same time the control group followed the hospital policy.
• During pre-operative period i.e. 4 hours before scheduled surgery the post-intervention data were collected from both the groups by the Physiological Parameter Measurement Scale (PPMS) and Modified Self-Evaluation Questionnaire based on Spielberger’s State Anxiety Inventory (SSAI).
• On the third post-operative day again the post-intervention data were collected from both the groups by the Physiological Parameter Measurement Scale (PPMS) and Modified Self-Evaluation Questionnaire based on Spielberger’s State Anxiety Inventory (SSAI).

Data analysis:
The analysis and interpretation of data in this study were based on data collected from demographic profile, Physiological Parameter Measurement Scale (PPMS) and Modified Self-Evaluation Questionnaire based on Spielberger’s State Anxiety Inventory (SSAI) and as per the objectives of the study. Descriptive statistics were used. Mean and standard deviation with graphical presentation of data. Inferential statistics was used to test hypothesis was t-test.

Significant finding and discussion:
Comparison of baseline anxiety in the study groups:
The finding showed that the p-value is greater than 0.05, which accepted HO at 5% l.o.s. i.e. there was no significant difference in anxiety level between the two groups in baseline anxiety before intervention by using Physiological Parameters Measurement Scale (PPMS) and Spielberger’s State anxiety Inventory (SSAI).

Table 5.1 Comparison of baseline anxiety in the study groups using t-Test: Two Samples for Means N=40

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Tool</th>
<th>t statistic</th>
<th>df</th>
<th>Table Value</th>
<th>p-Value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPMS</td>
<td>0.126</td>
<td>38</td>
<td>2.024</td>
<td>0.900</td>
<td>Accept Ho (At 5% l.o.s.)</td>
</tr>
<tr>
<td>2</td>
<td>SSAI</td>
<td>-0.667</td>
<td>38</td>
<td>2.024</td>
<td>0.509</td>
<td>Accept Ho (At 5% l.o.s.)</td>
</tr>
</tbody>
</table>

Comparison of post intervention anxiety in pre-operative period:
From PPMS the finding showed that the p-value is 0.051 (p-value < 0.1), which rejected Ho at 10% level of significance. From SSAI the finding showed that the p-value is 0.024 (p-value < 0.05), which rejected Ho at 5% level of significance. It is clear that the experimental group had comparatively less anxiety than the control group after the study intervention which was measured by PPMS and SSAI in pre-operative period which is accepting the alternative hypothesis H1 that there is a significant difference in anxiety level between the two groups in pre-operative period.

Table 5.2 Comparison of post-intervention anxiety in pre-operative period using t-Test: Two Samples for Means N=40

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Tool</th>
<th>t statistic</th>
<th>df</th>
<th>Table Value</th>
<th>p-Value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPMS</td>
<td>1.674</td>
<td>38</td>
<td>1.304</td>
<td>0.051*</td>
<td>Reject Ho (At 10% l.o.s.)</td>
</tr>
<tr>
<td>2</td>
<td>SSAI</td>
<td>2.034</td>
<td>38</td>
<td>1.686</td>
<td>0.024**</td>
<td>Reject Ho (At 5% l.o.s.)</td>
</tr>
</tbody>
</table>

Comparison of post-intervention anxiety in post-operative period:
From PPMS the finding showed that the p-value is 0.164 (p-value > 0.05), which accepted Ho at 5% level of significance i.e. there was statistically no significant difference in anxiety level between the two groups in post-operative period. From SSAI the finding showed that the p-value is 0.000 (p < 0.000), which rejected Ho at 1% level of significance. It also shows that the experimental group had comparatively less anxiety than the control group after the study intervention which was measured by SSAI in post-operative period which is accepting the alternative hypothesis H1 that there is significant difference in anxiety level between the two groups in post-operative period.
It is clear from the findings that the Pre-operative orientation programme played a significant role in the reduction of anxiety in pre and post-operative periods. These findings correlated with the various literature reviews which supports the findings.

CONCLUSION:

The findings showed that the experimental group had comparatively less anxiety than the control group after the study intervention which was measured by PPMS and SSAI in pre-operative period which is accepting the alternative hypothesis H1 that there is a significant difference in anxiety level between two groups in pre-operative period. It also revealed that there was statistically no significance difference seen in anxiety level between the two groups after the study intervention which was measured by PPMS in post-operative period which is accepting the null hypothesis H0 that there is no significant difference in anxiety level between the two groups in post-operative period. It also showed that the experimental group had comparatively less anxiety than the control group after the study intervention which was measured by SSAI in post-operative period which is accepting the alternative hypothesis H1 that there is a significant difference in anxiety level between the two groups in post-operative period.

These results suggested that providing Pre-operative orientation programme in pre-operative period assists in the reduction in physiological parameters (blood pressure, pulse and respiration) in pre-operative period and reduction in subjective feeling of anxiety of the participants in pre and post-operative period.

REFERENCES:

Table 3: Comparison of post-intervention anxiety in post-operative period using t-

Test: Two Samples for Means N=40

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Tools</th>
<th>t statistic</th>
<th>df</th>
<th>Table Value</th>
<th>p-Value</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PPMS</td>
<td>0.991</td>
<td>38</td>
<td>1.686</td>
<td>0.164NS</td>
<td>Accept Ho (At 5% l.o.s.)</td>
</tr>
<tr>
<td>2</td>
<td>SSAI</td>
<td>4.792</td>
<td>38</td>
<td>1.686</td>
<td>0.000***</td>
<td>Reject Ho (At 1% l.o.s.)</td>
</tr>
</tbody>
</table>

